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(57) ABSTRACT 

A polymorphic systolic array framework that works in con-
junction with an embedded microprocessor on an FPGA, that 
allows for dynamic and complimentary scaling of accelera-
tion levels of two algorithms active concurrently on the 
FPGA. Use is made of systolic arrays and hardware-software 
co-design to obtain an efficient multi-application acceleration 
system. The flexible and simple framework allows hosting of 
a broader range of algorithms and extendable to more com-
plex applications in the area of aerospace embedded systems. 

14 Claims, 7 Drawing Sheets 

Ito 
a

) 	 Mlcroprocamr 

GO-Prociwor  1,v 	
Pseudo-Cache 	720 

166 168 

NOW 	Al Y ~ 

164 F1n  (b) j&J b 	 170 
6 : 

	 IVow t62 	to 	rya wN 

Ica Box 	
172 

160 



U.S. Patent 	Apr. 29, 2014 	Sheet I of 7 	 US 8,710,864 B2 

%~ ~ / \ \ 
IUD  
2  
OL 



1wa 

wt 

—f 

C~ 
er. 

it 

s 
4 

R 

a 
7 

7 

U.S. Patent 	Apr. 29, 2014 	Sheet 2 of 7 
	

US 8,710,864 B2 

t 

t 

a 

r^. 
.f3 	 Gf 

w 



U.S. Patent 	Apr. 29, 2014 	Sheet 3 of 7 
	

US 8,710,864 B2 

UA UA tu 

10 	0* I 

11 4  



d 

I 

F 

4 
i 

U.S. Patent 	Apr. 29, 2014 	Sheet 4 of 7 

iiEtl 

US 8,710,864 B2 

3 	 ' 

3 

0 

-- 	= 
IN 	.;.: Lu 

Ei 4go%Q %uUA 

IIFi 
~~ 

~l 
l 
s 

1 
1 

7 
1 
f 

f 
r1r 

J 
F 

7 

1'^y. 



v 

Z7 
*114 w 

.j` 

U.S. Patent 	Apr. 29, 2014 	Sheet 5 of 7 	 US 8,710,864 B2 



v 

U.S. Patent 	Apr. 29, 2014 	Sheet 6 of 7 	 US 8,710,864 B2 

Q 

Z, 



U.R. Patent 	Apr. 29, 2014 	Sheet 7of7 	US 8,710,864 G2 

) 
2 

k % 

/ 	i e 
@ ~ 	 ~ 

a 	 _ 

2 	» 	$ 

0 

@ ~ 

~ \ 	 ~ 

/ 	̂ 

_ 
~ m ~ 



US 8,710,864 B2 
1 	 2 

DYNAMICALLY RECONFIGURABLE 	 which merge the designs of multiple filters. However no KF 
SYSTOLIC ARRAY ACCELORATORS 	 implementation invokes dynamic reconfiguration of the hard- 

ware. 
RELATED APPLICATIONS 

5 	 DESCRIPTION OF THE FIGURES 

This application claims the benefit under 35 U.S.C. §119 
(e) of U.S. Provisional Patent Application No. 61/327,365 
filed Apr. 23, 2010, and titled "Dynamically Reconfigurable 
Systolic Array Accelerator" which is incorporated herein by 
reference. 

GOVERNMENT LICENSE RIGHTS 

This invention was made with government support under 
Grant No. NNG06GE54G awarded by NASA. The govern-
ment has certain rights in the invention. 

TECHNICAL FIELD 

The present invention relates to dynamic and complimen-
tary scaling of algorithms active concurrently on a Field Pro-
grammable Gate Array. 

BACKGROUND 

Over the past few years SRAM (static random access 
memory) based FPGAs (field programmable gate array) have 
made significant strides in device fabric features, such as 
support for partial dynamic reconfiguration, immersed IP 
(intellectual property) components (including embedded Xil-
inx's DSP48 and Block RAM (BRAM) modules) and design 
automation tools to take advantage of these features. Their 
ASIC (application specific integrated circuits) like computa-
tional capabilities and post-launch reconfiguration features 
make them a viable alternative to replace microprocessors as 
on-board computers. 

The caveat is that the sophistication of the design ported on 
an FPGA depends on the designer exploring the computation 
nature of target algorithms, the flexibility they need in terms 
of acceleration, judicious use of classical techniques such as 
hardware-software partitioning in conjunction with newer 
methods of on-chip bitstream decompression and relocation. 

In one application example, to navigate in space an autono-
mous spacecraft must accurately estimate its state from noisy 
measurements. The Kalman filter (KF) processes each of 
these measurements and returns the optimal estimate of the 
state and the error covariance. The computational complexity 
of even the simple linear KF makes it difficult to run the filter 
efficiently (i.e. fast enough) on traditional on-board micro-
processors. KF acceleration approaches use both novel par-
allel architectures and algorithm enhancements to make the 
filter more computationally efficient. Hardware implementa-
tions of KF have been shown to dramatically improve perfor-
mance. KFs are composed of basic matrix operations: multi-
plication, addition, subtraction, and inversion. These 
operations can be efficiently implemented as systolic arrays 
(SA), particularly by using the Faddeev algorithm, the ben-
efits of which stem from its regularity, scalability, and its 
potential for linearity, and small area requirements. 

There have been some implementations of linear KFs on 
FPGAs but these do not address some of the limitations of 
specific features of the FPGA platform such as microproces-
sor or memory interfaces. During run-time the system model 
or requirements may change due to environment changes, 
sensor/actuator failure, or at scheduled times. Some have 
proposed reconfigurable systems to handle these situations, 
however previous approaches uses soft-reconfiguration, 

FIG. 1: Generic polymorphic systolic array framework. 
Each PE in a socket communicates east and west with 32-bits 
for data and 4-bits for control, routed through static bus mac- 

ro ros (BM) that connect to programmable switch boxes. Using 
three MUXs, the switch boxes can route signals to/from the 
pseudo-cache, loop signals back to the source socket, or route 
a signal to the next socket. 

FIG. 2: Example of scaling the Polymorphic systolic array 
i5 

framework. (a) The Polymorphic systolic array framework 
running with 3 sockets (A, B, C) assigned to application #1 
and 2 sockets (D, E) assigned to application #2. (b) Socket C 
is disconnected by reprogramming the neighboring switch 

20  boxes. It is then reconfigured to support a systolic array PE of 
application #2. (c) After reconfiguration of socket C, the 
registers in this socket are reset, then it is connected to the 
systolic array PEs of application #2 (D, E) by reprogramming 
the neighboring switch box. 

25 FIG. 3: 2D SA mapping of the Faddeev algorithm. 
FIG. 4: 1D SA obtained via vertical projection. 
FIG. 5: 1 D FSA with looping to improve resource utiliza-

tion. 
FIG. 6: Internal architecture of the 1D FSA PE (control 

30  signals are omitted). 
FIG. 7: (a) Architecture of the single precision floating-

point DSA. (b) Internal architecture of a DSA PE. 

DETAILED DESCRIPTION OF THE INVENTION 
35 

Specification 
FPGAs are increasingly being adopted as the primary on-

board computing system for autonomous deep space 
vehicles. The need to support several complex applications 

40 for navigation and image processing in a rapidly responsive 
on-board FPGA based computer, requires exploring and 
combining several design concepts such as systolic arrays, 
hardware-software partitioning, and partial dynamic recon-
figuration (PDR). A microprocessor-coprocessor design is 

45 employed that can simultaneously accelerate two single pre-
cision floating-point algorithms: e.g., extended Kalman filter 
(EKE) and a discrete wavelet transform (DWT). Contribu-
tions include: 

(i) a polymorphic systolic array framework comprising of 
50 reconfigurable partial region based sockets 150 to accel-

erate algorithms amenable to being mapped onto linear 
systolic arrays. When implemented on a low end Xilinx 
Virtex4 SX35 FPGA the design provides a speedup of at 
least 4.1 8x and 6.6 1 x over a state of the art micropro- 

55 cessor used in spacecraft systems for the EKE and DWT 
algorithms respectively. 

(ii) Switch boxes 140 to enable communication between 
static and partial reconfigurable regions 150 and a 
simple protocol to enable schedule changes when a 

60 socket's contents are dynamically reconfigured to alter 
the concurrency of the participating systolic arrays. 

(iii) A hybrid PDR method that combines Xilinx early 
access partial reconfiguration (EAPR), on-chip bit-
stream decompression and bitstream relocation to 

65 enable fast scaling of systolic arrays on the Polymorphic 
systolic array framework. This technique provided a 
2.7x improvement in reconfiguration time compared to 
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an off-chip partial reconfiguration technique that used a 
Flash card on the FPGA board. 

A technique to augment PDR is the concept of bitstream 
relocation. It involves slightly modifying the contents of a PB 
to mould it into a form that can be loaded onto a similar but 5 

different partial configuration region on the device. These 
methods are strongly tied to a specific family of devices and 
system architecture on the FPGA. One embodiment is imple-
mented by adding the decompression algorithm for obtaining 
the next word in the bitstream. However thi s solution does not io 
allow static routing in the partial regions. 

While each of the PDR enabling/enhancing methods is 
effective to a certain extent, a polymorphic systolic array can 
benefit considerably through a suitable application of a com-
bination of these prior methods. 15 

We disclose the system architecture implemented on the 
FPGA, comprising of a microprocessor 110, a coprocessor 
130 with a pseudo-cache 120, controller 210 and Polymor-
phic systolic array framework. Then we disclose the mapping 
of the EKE and DWT algorithms onto this architecture and 20 

how on-chip bitstream decompression/relocation methods 
are used to facilitate dynamic scaling of the Polymorphic 
systolic array framework. 

In one embodiment a system combines an EKE and a DWT 
on a Xilinx Virtex-4 SX35 FPGA using a flexible and dynami- 25 

cally scalable systolic array co-processor and a MicroBlaze 
host processor. The design uses a combination of techniques 
such as dynamic partial bitstream decompression (PBD), par-
tial bitstream relocation (PBR) and floor planning of partial 
reconfiguration (PR) regions. 30 

While the KF is a well understood algorithm, it cannot 
accurately model the non-linearity of complex real world 
problems, for example, for navigation/guidance. Instead the 
EKE a variant of the linear KF which dynamically linearizes 
the non-linear system equations to enable state estimation is 35 

used. The difficulty in porting the EKE onto an FPGA is 
calculating the non-linear portions of the algorithm. More-
over these non-linear equations can change completely from 
one problem to another necessitating a new architecture to be 
designed for each specific problem. Therefore we partition 40 

the EKE into linear and non-linear components that can be 
solved on a co-processor accelerator and software respec-
tively. 

Many image/signal applications such as compression, tar-
get recognition, classification etc. are composed of algo- 45 

rithms that can be accelerated by linear SAs. A subset of these 
algorithms and their SA implementations include: DWT, 
K-means clustering, Bayes classifier, Eigen value calculation 
etc. The DWT algorithm, a powerful filtering algorithm, in 
particular has been used in aerospace applications for both 50 

on-board and off-line image compression. While the prin-
ciples behind the wavelet transform are known to those 
skilled in the art, we disclose a convolution kernel based 
DWT algorithms, principally consist of using separable 1D 
(dimension) filters along the horizontal and vertical direc- 55 

tions each followed by sub-sampling. This process is often 
repeated several times (also called decomposition) to obtain a 
data structure that can be efficiently compressed. 

PDR is the process of reconfiguring only a portion of an 
FPGA at run-time, after initial configuration, while the other 60 

portions remain active. The EAPR methodology from Xilinx 
is the most supported approach, hence used in one embodi-
ment. However with EAPR for the Virtex4 class of FPGA 
devices there are a few caveats. Two partial regions may not 
overlap vertically in the same clock region. Therefore a clock 65 

region dictates the granularity of the partial region sizes in the 
floor planning phase. 

As the complexity of FGPA architectures have increased, 
so has the bitstream size that is required to configure the 
device. With PDR methods being actively explored, there has 
been a need to reduce the size of the bitstreams. This has 
resulted in the exploration of classic compression algorithms 
by the FPGA community. We disclose a Run-Length Encod-
ing (RLE) for the compression of partial bitstreams (PB) as it 
provides a consistently good quality of performance for most 
of the example cases without the need for storing a dictionary 
on scarce BRAM resources. 

The system on the FPGA consists of a microprocessor 110 
and a co-processor 130 (FIG. la). One embodiment uses the 
Xilinx soft-core MicroBlaze processor with an internal float-
ing-point unit and attached memory. The microprocessor 110 
serves three purposes: (i) It is available for computing por-
tions of an algorithm that are deemed better suited for execu-
tion in software. For instance, in the EKE algorithm, the 
non-linear functions are well suited for software based execu-
tion. (ii) It hosts software necessary to support partial 
dynamic reconfiguration, bitstream decompression and relo-
cation. (iii) It is responsible for controlling and scheduling 
operations onto the co-processor. 

The co-processor 130 consists of the Polymorphic systolic 
array framework, a controller 210 and a pseudo-cache 120. It 
is controlled by instructions sent from the embedded micro-
processor 110 and transacts with a pseudo-cache 120 for data. 
The pseudo-cache 120 is so named because while it does not 
have all the features of a traditional cache, it serves as a 
partially refreshable buffer storing a sub-set of the micropro-
cessor memory's contents and provides low latency access to 
the co-processor 130. The size of the pseudo-cache 120 is 
determined by the number of available BRAMs. A table on 
the microprocessor 110 keeps dirty bits for both memories. If 
data is made dirty by the microprocessor 110 the correspond-
ing pseudo-cache 12 blocks are freed, the data must be sent 
back to the co-processor 130 if it's used there again. If data is 
made dirty by the co-processor the cached version is sent back 
to the microprocessor 110 when it's used there. This ensures 
data is only synchronized between the microprocessor 11 and 
co-processor 130 when necessary. Instructions for reading or 
writing data to the co-processor 13 from the microprocessor 
110, reading and writing data from the co-processor 13 
pseudo-cache 120 to the Polymorphic systolic array frame-
work, programming the switch boxes 140, and resetting the 
co-processor 130 are made available. One embodiment on the 
V4 SX35 FPGA had a co-processor 130 pseudo-cache 120 of 
4K words, with 128 lines/blocks, and 32 words perblock with 
fully associative mapping. 

In one embodiment the Polymorphic systolic array frame-
work is composed of Sockets 150 that are PR regions (FIG. 
la). Each socket 150 has four 32-bit buses 142 and four 4-bit 
buses 144 that link it to two neighboring switch boxes. The 
32-bit buses 142 are intended to allow PEs residing in a socket 
to receive and send single precision floating-point data types. 
The 4-bit buses 144 are intended to carry control information. 
Within a socket 150, asynchronous busmacros (BM) are 
inserted to allow wires in the static regions to connect to wires 
in the PR region. Each switch box 160 (FIG. lb) consists of 
three multiplexers that can be programmed to allow routing 
along the east-west directions 164, 162, 170, 172, east/west-
north 166, 168 and loops (east-east or west-west). By coor-
dinating the reconfiguration of sockets, controlling the mul-
tiplexers inside switch boxes, it is possible to dynamically 
scale the number of participating PEs in a systolic array. 

When two systolic arrays are concurrently sharing the 
Polymorphic systolic array framework, it is possible to scale-
up one systolic array by increasing the number of sockets to 
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host its PEs, at the cost of scaling-down a proportional num-
ber of PEs belonging to the other systolic array. One embodi-
ment uses the transfer of control protocol shown with an 
example in FIG. 2. The first step involves disconnecting a 
socket 150 (socket C in FIG. 2) from the SA it currently 
belongs to (App 1). This requires re-routing data and control 
signals inside neighboring switch boxes 140 (FIG. 2a). The 
second step (FIG. 2b) involves reconfiguring the socket 220 
by initiating the process from the microprocessor via the OPB 
HWICAP (on-chip peripheral bus based hardware internal 
configuration access port). During this process both systolic 
arrays, are still functional, albeit with one of them having a 
lesser number of PEs. The third step involves resetting the PE 
in the newly configured socket, because it is not possible to set 
contents of registers in this region to a default known state (a 
limitation of EAPR). The fourth step involves re-routing sig-
nals in the appropriate switch boxes to augment SA of appli-
cation 2 with the newly created PE (FIG. 2c). 

The EKE algorithm was partitioned into non-linear func-
tions (state prediction, measurement prediction and solving 
the 7acobian matrices) and matrix operations (state error 
covariance prediction, measurement residual, covariance of 
the measurement residual, Kalman gain calculation, state 
estimate update and state error covariance estimate update). 
The non-linear functions are unique to each EKE instance 
therefore they are implemented in software on an embedded 
microprocessor. However, since the matrix operations in pre-
dict and update phases are consistent across many EKE 
instances and vary only in size, so they are mapped onto the 
systolic array in the co-processor using the Faddeev algo-
rithm. This algorithm is a popular method for computing the 
Schur Compliment, D+CA- 'B (where DPxM, ANxN, 
BNxM, CPxN are all matrices), given an arrangement 

~ C D1. 

By properly arranging the four inputs any three operations 
(matrix inverse, multiplication and addition) or a combina-
tion of the three can be performed. For example, to add two 
matrices X and Y, A must be set to an identity matrix, B 
assigned to X, C set as an identity matrix and D assigned to Y. 
This resolves toY+I*I-i *X=Y+X. 

TABLE 1 

Boundary Cell 

Matrix 
Row XI> IF Q swap 	New  

A/B 1 —P/X 1 	X 
0 _X/P 0 	P 

C/D 1/0 

TABLE 2 

Internal Cell 

swap New P 

I x 
0 P 

A 2D SA scales by 0(2N) PEs while a 1D linear SA scales 
by O(1). In order to have reasonable granularity for scaling in 

6 
this application, a linear SA was designed by projecting the 
2D array 310 onto a vertical array consisting of one boundary 
cell 350 and one internal cell 360 on each level as shown in 
FIGS. 3 and 4. Tables 1 and 2 summarize the functionality of 

5  the boundary 350 and internal 360 cells of FIG. 3 respectively, 
where X is the input element from the top, P is an internal 
register contained in each cell, Q is the quotient passed from 
the boundary cell to each internal cell of a row, and swap is a 
control signal which is also passed from the boundary cell to 

IO each internal cell of a row. Each element in the stream is 
tagged as either the first row, last row, A/B row or C/D row as 
shown in FIG. la  and scheduled onto the 1D SA as shown in 
FIG. 4. A PE is initialized (internal FIFO register is filled) 

15  when it receives the elements of the first row, performs trian-
gulation ofA when it receives elements of NB rows, performs 
annulling C when it receives elements of C/D rows and is 
un-initialized (internal FIFO register is emptied) when it 
receives elements of the last row. For a scalable SA the num- 

20 ber of processing elements (PE) in a SA and the size of the 
input must be independent, since the number of PEs can 
change irrespective of the input. In this vertical mapping an 
oversized data set is handled by recursively processing the 
data until the result is reached (symbolized as a loop back 

25  dotted line in FIGS. 4 and 5). As the number of PEs increases 
the number of times the output needs to be recursively pro-
cessed is proportionally reduced according to 

30 	 N 

~2R~ 

where R is the number of resources/sockets and N is the 
35  height and width of the A input matrix. For an input of size 

4NxN (where A, B, C, D are of size NxN) the size of the final 
output is NxN and output of each level is (2N-i)x(2N-i) for 
i=1 ... N. Even if another stream is started immediately after 
the first, there will be a gap of control steps in the data stream 

40 where the PEs are not being utilized. So the data stream is 
looped back through the PEs to increase utilization. Each PE 
buffers both top and bottom input streams, and then multi-
plexes each stream to the boundary and internal cells (FIG. 5). 
This systolic array will henceforth be referred to as an FSA 

45 (Faddeev systolic array). The internal structure of the PE with 
pipelined single precision floating-point cores is shown in 
FIG. 6 which comprises of FIFO registers, buffers 710, 
switches 720 and single precision floating-point arithmetic 
cores 790. 

50 	It can be observed that if each arithmetic operation had a 
latency of one this architecture would be inefficient, but in the 
case of single precision arithmetic, each operation takes mul-
tiple cycles. For instance, the single precision floating-point 
divider is the largest floating-point core in the design. Its area 

55 was reduced by 70% so that it could fit within a PE con-
strained to one clock region of the FPGA. In one embodiment 
this was accomplished by reducing its input rate from one 
element every clock cycle to one element every 14 clock 
cycles. So after the divider starts calculating one element, up 

60 to 14 elements of the previous row (stored in internal FIFO 
buffers) can be supplied to the pipelined multiplier. Addition-
ally since this projection results in a coarse grained pipeline, 
only a single input and output stream is required. This sim-
plifies the control and memory interface to the array. This is 

65 important since the SA will be applied to a polymorphic SA 
that must remain generic enough to handle many different 
SAs. 
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The systolic array implementation of the DSA (DWT sys-
tolic array) shown in FIG. 7 is another embodiment wherein 
we have added buffers to allow usage of pipelined single 
precision floating-point. The input is fed in at the left of the 
systolic array while partial sums are fed from right to left 
performing a convolution. Since the output is decimated by 2, 
only half of the operations are required, so each PE will ignore 
every other input. Each PE consecutively computes both the 
low-pass and high-pass result. If the number of taps is greater 
than the number of available PEs each level must be ran 
multiple times 

(11 R 

times, where W is the number of taps and R is the number 
resources/sockets) by passing the output of the SA to the 
partial sums input of the last PE (symbolized as a dotted line 
in FIG. 7). Therefore the DSA computes per run, a high pass 
filter operation, a low pass filter operation and decimation by 
two. This results in the need for three such runs to compute the 
LL (lo-low), LH (low-high), HL (high-low) and HH (high-
high) sub-images for one level of decomposition. There are 
several ways to support multiple levels of decomposition 
know to those skilled in the art. In one embodiment a simple 
approach is adopted of using the microprocessor to run soft-
ware necessary to schedule the appropriate data and tasks 
onto the co-processor. 

The PDR process consists of decompression software run-
ning on the MicroBlaze (specifically run length encoding 
(RLE)) that consumes off-line compressed PB of a socket, 
stored on BRAMs. One reason for storing partial bitstreams 
on BRAMs is to avoid the alternative of storing them on an 
external compact Flash card on the FPGA board which 
involves large delays in reading, adversely affecting recon-
figuration times. The decompression software canproduce up 
to 128 bytes of bitstream per iteration which are stored on the 
processor's memory (software buffer). Then the processor 
executes the bitstream relocation software that consumes the 
128 bytes of the PB and modifies the frame address to enable 
relocation into a different socket. The relocated bitstream is 
then sent to the OPB HWICAP buffer (capacity of 2K bytes). 
Therefore the decompression and relocation software is run 
iteratively until the ICAP buffer is filled. At this point, the 
MicroBlaze executes control software to trigger the ICAP 
which then performs the configuration of the device. This is 
effective at avoiding the need to allocate a much greater 
number of BRAMs to store multiple uncompressed PBs for 
each socket (88KB each for our test cases). 

The reason for choosing a bitstream relocation method was 
based on a salient feature of systolic arrays: The PEs are 
architecturally identical. However even for identical architec-
tures the resulting PBs are different because frame addresses 
(components of any bitstream) are unique to a physical loca-
tion on the device, requiring a different PB for every PR 
region housing an architecturally identical PE. It is inefficient 
to store several such PBs on BRAMs. It is more efficient to 
store a single version of each type of possible PE and relocate 
to the desired PR region. Efficient decompression of bit-
streams is supported by integrating the RLE decompression 
algorithm into the relocation software to get the next word in 
the bitstream. However, invoking this style of bitstream relo-
cation requires that there be no static routes passing through 
a PR region because it only relocates frame addresses and 

8 
does not alter logic/routing contents (necessary in the case of 
relocating PR regions containing static routing). 

In the layout of the floor plan for one embodiment of the 
system architecture the sockets (PR regions) of the Polymor- 

5 phic systolic array framework have distributed on the left side 
of the chip and the components of the static region (Micro-
Blaze, pseudo-cache, controller, switch boxes, etc.) are dis-
tributed on the right side of the chip, except for one clock 
region on the left side that is also allocated for the static 

io region. This clock region was allocated as part of the static 
region because: (i) there is an I/O port that connects to the 
System ACE on the ML402 board, requiring a static route 
through this clock region, which prohibits relocating a PB to 
it of the dimensions in this design. (ii) Additional BRAMs 

15 were required for the Microprocessor memory and pseudo-
cache that were in scarcity, hence making them unavailable 
for a sixth socket. The busmacros have been stacked on the 
right side of the sockets, to avoid necessitating any static 
routes passing through the PR regions. No static signals cross 

20 the PR boundaries except for clock signals. 
Since we do not define two PR regions stacked vertically in 

one clock region, we limited the height of a PR region to one 
clock region. This led us to explore any needed increase in the 
logic packed in a PR region horizontally, rather than vertically 

25 across clock regions. This design allows for the inclusion of 
two or more smaller PEs within a socket. However this 
decreases the granularity of reconfiguration as well as inter-
connections. Therefore we retained a simple framework for 
the test cases where only one PE resides in a socket which 

3o resides in one clock region. 
All example cases where run on (a) Xilinx Virtex4 SX35 

based ML 402 board running at 100 MHz and compared to 
software implementations on a Virtutech Simics PowerPC 
750 simulator [20] running at 150 MHz (equivalent to the 

35 embedded RAD750 used in many space applications). The 
FPGA based design ran the EKE algorithm 4.1 8x faster for 
the example on an autonomous UAV (unmanned air vehicle) 
and related parameters: number of states —l0, number ofinea-
surements=9, number of control inputs=6. This translates to 

40 the dimensions of the matrices of the Faddeev algorithm 
(ANx,v, Bzvxm, CPxzv, DPxM) as follows for the linear opera-
tions in terms of 3-tuples (N, M, P are the input dimensions to 
the Faddeev algorithm per iteration): state error covariance 
prediction (10,10,10; 10,10,10), measurement residual (1, 1, 

45 9), covari ance ofthe measurement residual (10,9,10; 10, 9,9), 
Kalman gain calculation (9,9, 10), state estimate update (9, 10, 
10) and state error covariance estimate update (9,10,10; 10,9, 
10). The FPGA based design ran the 2D DWT algorithm 
6.61x faster for the 2D DWT algorithm, where the matrix 

50 size-64x64 and the number of taps of the High pass and Low 
pass filters was 4. 

For the example case of the Polymorphic systolic array 
framework in full FSA configuration, we observed that from 
the perspective of the microprocessor, 45% of the time was 

55 spent controlling accelerated operations, 25% was spent 
doing non-linear operations, and 29% was spent transferring 
data to or from the co-processor. Furthermore we observed 
that 45% of the time was spent on the microprocessor and 
55% on the accelerator. For the DSA mode of operation, 31 % 

60 of the time was spent on data transfers and 69% of the time 
was spent on data computations on the accelerator. The per- 
formance of the pseudo-cache for the EKE test cases was 85% 
hitrate at the granularity of a word (32 bits) since a word is the 
smallest unit of data that can be replaced in the cache from the 

65 microprocessor's memory. However for the DWT, there were 
no pseudo-cache misses because the entire image was pre- 
loaded prior to access by the Polymorphic systolic array 
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framework and intermediate LP/HP filter results (after row 
based operations) were carefully managed on the pseudo-
cache for the next set of LP/HP operations along columns. 
The area occupied by a FSA-PE was 344 Slices, 8 DSPs, 3 
FIFOs. The area occupied by a DSA-PE was 724 Slices, 8 5 

DSPs, 5 FIFOs. 
There are several factors that affect the reconfiguration 

latency in this design, including: the size of the PB, time for 
address relocation, location of the PR, time for bitstream 
decompression, and external memory latency. The uncom- io 
pressed PB for a socket configured as either a FSA-PE or a 
DSA-PE is the same (88KB i.e. 44 BRAMs). However the 
RLE compressed PB for a FSA-PE is 59KB and DSA-PE is 
39KB. Some of more important observations made are sum-
marized, assuming the following conventions: F—PB stored 15 

on flash card, C—PB is compressed and decompression is 
performed by the MicroBlaze, B—PB is stored on BRAM, 
R—PB is relocated with source and destination sockets on the 
same side of the meridian line, PB is relocated with source 
and destination sockets on different sides of the meridian line. 20 

<B> reduces the reconfiguration latency by 86% compared 
to <F>. This is the fastest reconfiguration method, but 
requires significant use of valuable BRAMs (44 for 
every PE's PB). 

<B, C> reduces the number of BRAMs needed by a factor 25 

of 2 compared to <B>, but the decompression process 
(in software) increases the reconfiguration time by 
approximately 150%. 

<B, R> added a negligible overhead over <B>, but avoided 
the need for extra sets of BRAMs to store a PB for each 30 

socket. 
The performance of <B, C, R> was similar to <B, C>, but 

was significantly poorer for <B, C, M> because 
the contents of each frame have to be bit-reversed when 

relocating from one side of the chip to the other. 	35 

Hence <B, C, R> performed about 2.7x better than <F>. 
The above description discloses the invention including 

preferred embodiments thereof. The examples and embodi-
ments disclosed herein are to be construed as merely illustra-
tive and not a limitation of the scope of the present invention 40 

in any way. It will be obvious to those having skill in the art 
that many changes may be made to the details of the above-
described embodiments without departing from the underly-
ing principles of the invention. 

We claim: 	 45  
1. An FPGA system comprising: 
a microprocessor; 
a coprocessor with a pseudo-cache, 
a controller; 
a polymorphic systolic array framework comprising a 50 

reconfigurable partial region based sockets to accelerate 
algorithms amenable to being mapped onto linear sys-
tolic arrays; 

said microprocessor and said coprocessor and said control- 
ler and said polymorphic systolic array framework are 55 

communicably coupled; 
wherein EKF and DWT algorithms are mapped onto said 

architecture; and 
on-chip bitstream decompression/relocation methods used 

to facilitate the dynamic scaling of said polymorphic 60  
systolic array framework. 

10 
2. A polymorphic systolic array system comprising: 
reconfigurable partial region based sockets; and 
on-chip bitstream decompression/relocation methods are 

used to facilitate the dynamic scaling of said polymor-
phic systolic array framework. 

3. The polymorphic systolic array system of claim 2 
wherein: 

said polymorphic systolic array framework accelerates 
algorithms amenable to being mapped onto linear sys-
tolic arrays. 

4. The polymorphic systolic array system of claim 2 further 
comprising: 

an extended Kalman filter algorithm mapped onto said 
polymorphic systolic array system. 

5. The polymorphic systolic array system of claim 2 further 
comprising: 

a discrete wavelet transform algorithm is mapped onto said 
polymorphic systolic array system. 

6. The polymorphic systolic array system of claim 2 further 
comprising: 

switch boxes wherein said switch boxes enable communi-
cation between static and partial reconfigurable regions; 
and 

a protocol to enable schedule changes when said socket's 
contents are dynamically reconfigured to alter the con-
currency of the participating systolic arrays. 

7. The polymorphic systolic array system of claim 2 further 
comprising: 

a hybrid PDR method that combines early access partial 
reconfiguration (EAPR), on-chip bitstream decompres-
sion and bitstream relocation to enable fast scaling of 
said systolic arrays. 

8. A systolic array system comprising: 
reconfigurable partial region based sockets; 
a microprocessor communicably coupled to said reconfig-

urable partial regions based sockets; and 
on-chip bitstream decompression/relocation methods are 

used to facilitate the dynamic scaling of said polymor-
phic systolic array framework. 

9. The systolic array system of claim 8 wherein: 
said systolic arrays are polymorphic. 
10. The systolic array system of claim 9 further compris-

ing: 
a coprocessor communicably coupled to said reconfig-

urable partial regions based sockets. 
11. The systolic array system of claim 10 further compris-

ing: 
a pseudo-cache communicably coupled to said coproces-

sor. 
12. The systolic array system of claim 11 further compris-

ing: 
a controller communicably coupled to said microproces-

sor. 
13. The systolic array system of claim 12 further compris-

ing bitstream relocation. 
14. The systolic array system of claim 13 wherein: 
said bitstream relocation involves slightly modifying the 

contents of a partial bitstream to mould it into a form that 
can be loaded onto a similar but different partial con-
figuration region on the device. 
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